Parton distribution functions for the LHC era Pavel Nadolsky in collaboration with Q.-H. Cao, J. Huston, H.-L. Lai, J. Pumplin, D. Stump, W.-K. Tung, and C.-P. Yuan Michigan State University June 6, 2008 ## Global picture of QCD factorization A relevant, yet incomplete, picture ## Global picture of QCD factorization Global interconnections can be as important as (N)NLO perturbative contributions; are different at the LHC and Tevatron ## **Examples of global connections** (based on our recent studies) - Heavy-quark mass effects on LHC W, Z cross sections - PDF-induced correlations between physical observables - Role of subleading channels (strangeness, intrinsic charm) in the PDF uncertainties Extensive related work by other groups; see presentations at 2008 PDF4LHC, DIS, HERA-LHC workshops ## A typical perturbative QCD calculation Higgs boson production $pp \to (H \to \gamma \gamma)X$ A. Cross section $\sigma_{pp\to H\to\gamma\gamma}$ for production and decay of H, e.g. via $g+g\to H$ $$\sigma_{pp\to H\to\gamma\gamma} = \widehat{\sigma}_{gg\to H\to\gamma\gamma} f_{g/p}(x_1, M_H) f_{g/p}(x_2, M_H) + \dots$$ - $\widehat{\sigma}_{ag \to H \to \gamma \gamma}$ is the hard-scattering cross section, given by a perturbation series in α_s (at least formally) - $= f_{q/p}(x,\mu)$ is the parton distribution function for finding a gluon g with momentum $x\vec{P}$ in a proton with momentum \vec{P} ($|ec{P}|pprox Epprox \mu>1$ GeV) at a typical momentum μ $f_{q/p}(x,\mu)$ are universal (process-independent) nonperturbative **functions** # Perturbative evolution of $f_{i/p}(x,\mu)$; global fits At the initial momentum scale $Q_0 \sim 1$ GeV, the PDF's are parametrized as $$f_{i/p}(x,Q_0) = a_0 x^{a_1} (1-x)^{a_2} F(a_3,a_4,...)$$ At $Q>Q_0$, $f_{i/p}(x,\mu)$ are computed by solving Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations, $$\mu \frac{df_{i/p}(x,\mu)}{d\mu} = \sum_{j=q,u,\bar{u},d,\bar{d},\dots} \int_x^1 \frac{dy}{y} P_{i/j}\left(\frac{x}{y},\alpha_s(\mu)\right) f_{j/p}(y,\mu),$$ with $P_{i/j}$ known to order α_s^3 (NNLO): $$P_{i/j}(x,\alpha_s) = \alpha_s P_{i/j}^{(1)}(x) + \alpha_s^2 P_{i/j}^{(2)}(x) + \alpha_s^3 P_{i/j}^{(3)}(x) + \dots$$ The values of a_i and their uncertainties are determined from a global fit to hadron scattering data ## Global analysis at Michigan State/Taiwan/Washington - a part of the Coordinated Theoretical Experimental study of QCD (CTEQ) in U.S.A. - development of general-purpose PDF's (Wu-Ki Tung and collaborators) - new CTEQ6.6M standard set and 44 extreme eigenvector sets (arXiv:0802.0007) - ▶ a fit of NLO cross sections to 2714 experimental data points from deep inelastic scattering, lepton pair (via γ^* , W) production, and Tevatron Run-1 jet production - \blacktriangleright improved treatment of s, c, b PDF's - correlation analysis of collider observables - available in the LHAPDF-5.4 library and at www.cteq.org - Minimization of a likelihood function (χ^2) with respect to ~ 30 theoretical (mostly PDF) parameters $\{a_i\}$ and > 100 experimental systematical parameters - partly analytical and partly numerical Establish a confidence region for $\{a_i\}$ for a given tolerated increase in χ^2 #### Pitfalls to avoid - "Landscape" - disagreements between the experiments In the worst situation, significant disagreements between M experimental data sets can produce up to $N\sim M!$ possible solutions for PDF's, with $N\sim 10^{500}$ reached for "only" about 200 data sets #### Pitfalls to avoid - Flat directions - unconstrained combinations of PDF parameters - dependence on free theoretical parameters, especially in the PDF parametrization ### The actual χ^2 function shows - a well pronounced global minimum χ_0^2 - weak tensions between data sets in the vicinity of χ_0^2 (mini-landscape) - some dependence on assumptions about flat directions ## The actual χ^2 function shows - a well pronounced global minimum χ_0^2 - weak tensions between data sets in the vicinity of χ_0^2 (mini-landscape) - some dependence on assumptions about flat directions ## The actual χ^2 function shows - a well pronounced global minimum χ_0^2 - weak tensions between data sets in the vicinity of χ_0^2 (mini-landscape) - some dependence on assumptions about flat directions The likelihood is approximately described by a quadratic χ^2 with a revised tolerance condition $\Delta \chi^2 < T^2$ ## The actual χ^2 function shows - a well pronounced global minimum χ_0^2 - weak tensions between data sets in the vicinity of χ_0^2 (mini-landscape) - some dependence on assumptions about flat directions The likelihood is approximately described by a quadratic χ^2 with a revised tolerance condition $\Delta \chi^2 < T^2$ ## The actual χ^2 function shows - a well pronounced global minimum χ_0^2 - weak tensions between data sets in the vicinity of \(\chi_0^2\) (mini-landscape) - some dependence on assumptions about flat directions The likelihood is approximately described by a quadratic χ^2 with a revised tolerance condition $\Delta \chi^2 \leq T^2$ # CTEQ6 tolerance criterion (2001) Acceptable values of PDF parameters must agree at ≈90% c.l. with all experiments included in the fit, for a plausible range of assumptions about the PDF parametrization, scale dependence, experimental systematics, ... Can be crudely approximated (but does not have to) by assuming $T \approx 10$ for all PDF parameters A somewhat stricter variant of this criterion is applied in the MSTW'08 analysis #### HERAPDF0.1 set based on the combined neutral-current DIS data (2008) Christinel Diaconu. HERA-LHC workshop, 2008 #### HERAPDFO.1 set based on the combined H1+ZEUS data Smaller nominal PDF uncertainty as compared to CTEQ/MSTW; but - insufficient PDF flavor separation (neutral-current DIS probes only $4/9 \left(u + \bar{u} + c + \bar{c}\right) + 1/9 \left(d + \bar{d} + s + \bar{s}\right)$) - more rigid PDF parametrizations (e.g., $g(x,Q_0) = Ax^B(1-x)^C$) \Rightarrow less flexibility to probe the PDF behavior, notably at small x - so far, a simplified (zero-mass scheme) treatment of charm and bottom mass dependence ## Studies of tolerance in new approaches **Neural Network PDF collaboration** Biases due to the parametrization, Gaussian approximation for errors are reduced; better estimates for the PDF uncertainty may be feasible ## Theoretical errors: uncertainties vs. mistakes PDF error bands reflect *uncertainties* (a range of theoretical predictions for plausible input assumptions) due to - experimental errors propagated into PDF's - treatment of possible inconsistencies between experimental data sets - dependence on factorization scales, choice of the PDF parametrization, treatment of higher twists, nuclear effects,... - numerical approximations in PDF fits The uncertainties must not be confused with mistakes caused by outdated assumptions in the previous analyses Oversimplified treatment of heavy-quark (s, c, b) contributions is one such mistake that can no longer be tolerated # s, c, b: the least constrained sector of the nucleon structure - Data from HERA, NuTeV, Tevatron is increasingly sensitive to heavier flavors - Some theoretical constraints on $Q_{\pm}(x,\mu) = Q(x,\mu) \pm \bar{Q}(x,\mu)$ (Q = s, c, b) can be now released, and new PDF models can be examined - opportunities for interesting QCD tests - \triangleright QCD factorization with realistic $m_{c,b}$ dependence - studies of flavor asymmetries in the quark sea - impact on BSM searches, general hadronic physics at the LHC, etc. # CTEQ6.5 and CTEQ6.6: advanced treatment of heavy quarks - 1. full implementation of the general-mass "SACOT- χ " scheme - ▶ differences in predictions for c, b scattering $(F_2^{c,b}(x,Q^2)$, etc.), EW precision cross sections, as compared to the zero-mass CTEQ6.1 Tung et al., JHEP 0702, 053 (2007): **CTEQ6.5** exploration of free strange PDF's and/or asymmetric strange sea $$s_{+}(x) \neq r\left(\bar{u}(x) + \bar{d}(x)\right), \ s_{-}(x) \neq 0,$$ where $s_{+}(x) \equiv s(x) \pm \bar{s}(x)$ Lai et al., JHEP 0704, 089 (2007); CTEQ6.5S - 3. PDF's with nonperturbative charm - $c(x, \mu_0 = m_c) \neq 0$ due to low-energy charm excitations (as opposed to $g \rightarrow c\bar{c}$ radiative production) Pumplin et al., PRD 75, 054029 (2007); | PDF
family | Number of PDF sets | $s_+(x)$ | $s_{-}(x)$ | $\alpha_s(M_Z)$ | Nonpert.
charm PDF | |---------------|--------------------|----------|------------|-----------------|-----------------------| | 6.6 | 45 | free | 0 | 0.118 | No | | | | | | | | | | | | | | | - CTEQ6.6M + 44 extreme eigenvector sets - $ightharpoonup s_+(x)$ is independent of $\bar{u}(x) + \bar{d}(x)$ - $s_{-}(x) = 0$, in agreement with the data at 90% c.l. - ▶ the preference for $s_-(x) \neq 0$ remains marginal: $\Delta \chi^2 = -15$ for $\int_0^1 x s_-(x, \mu_0) dx = 0.0018, \sqrt{2N_{NuTeV}} = 22$ | PDF
family | Number of PDF sets | $s_+(x)$ | $s_{-}(x)$ | $\alpha_s(M_Z)$ | Nonpert.
charm PDF | |---------------|--------------------|----------|------------|-----------------|-----------------------| | 6.6 | 45 | free | 0 | 0.118 | No | | 6.6C | 4 | free | 0 | 0.118 | Yes | | | | | | | | ■ CTEQ6.6C: updated PDF's with intrinsic charm | PDF
family | Number of PDF sets | $s_+(x)$ | $s_{-}(x)$ | $\alpha_s(M_Z)$ | Nonpert.
charm PDF | |---------------|--------------------|----------|------------|-----------------|-----------------------| | 6.6 | 45 | free | 0 | 0.118 | No | | 6.6C | 4 | free | 0 | 0.118 | Yes | | 6.6A | 4 | free | 0 | 0.112-0.125 | No | - CTEQ6.6C: updated PDF's with intrinsic charm - CTEQ6.6A: PDF's for $\alpha_s(M_Z) = 0.112 0.125$ | PDF
family | Number of PDF sets | $s_+(x)$ | $s_{-}(x)$ | $\alpha_s(M_Z)$ | Nonpert.
charm PDF | |---------------|--------------------|----------|------------|-----------------|-----------------------| | 6.6 | 45 | free | 0 | 0.118 | No | | 6.6C | 4 | free | 0 | 0.118 | Yes | | 6.6A | 4 | free | 0 | 0.112-0.125 | No | - CTEQ6.6C: updated PDF's with intrinsic charm - CTEQ6.6A: PDF's for $\alpha_s(M_Z) = 0.112 0.125$ - All CTEQ6.6 sets are provided for $10^{-8} \le x \le 1$ ## CTEQ6.6 PDF's dashes: CTEQ6.1M (zero-mass scheme) - very different strange PDF's - CTEQ6.6 u, d are above CTEQ6.1 at $x \lesssim 10^{-2}$ - ▶ The result of suppressed charm contribution to $F_2(x,Q)$ at HERA in the GM-VFN scheme ## General-mass (ACOT- χ) factorization scheme - lacktriangle Charm Wilson coefficient function is suppressed at $Q ightarrow m_c$ - To keep agreement with DIS F_2 data, u, d, \bar{u} , \bar{d} PDF's are enhanced at small x, as compared to the zero-mass (ZM-VFN) scheme # Z and W production as "standard candle" processes - Event rates for $pp \to W^\pm X$, $pp \to Z^0 X$ at the LHC can be measured with accuracy $\delta \sigma/\sigma \sim 1\%$ (tens of millions of events even at low luminosity) - These measurements will be employed to tightly constrain PDF's and monitor the LHC luminosity £ in real time (Dittmar, Pauss, Zurcher; Khoze, Martin, Orava, Ryskin; Giele, Keller';...) - ▶ other methods will initially give $\delta \mathcal{L} = 10 20\%$ - Various cross section measurements will be normalized to Z, W cross sections # W and Z rapidity distributions at NNLO (Anastasiou, Dixon, Melnikov, Petriello, 2003) - Tiny scale dependence (~ 1%) - For |y| < 2, NNLO leads to a uniform rescaling $\sigma_{NNLO} \approx K_{NNLO} \cdot \sigma_{NLO}$; $K_{NNLO}^{LHC} \approx 0.98$ Larger corrections at forward rapidities ## CTEQ6.6 W and Z cross sections at the LHC - Computation done with NNLL-NLO ResBos (Balazs, Ladinsky, P.N., Yuan), with the goal to estimate relative differences due to NLO/NNLO PDFs - Effect of NNLO hard + NLO EW contributions is nearly independent of PDF's - Ellipses: the PDF uncertainty for $\Delta \chi^2_{scaled} = 100$ (<90% c.l. for 2-dim dependence) General-mass CTEQ6.6 predictions are higher by 6-7% compared to zero-mass CTEQ6.1 (enhanced CTEQ6.6 $u,\,d$ PDF's at $x\sim0.005$) ## W and Z cross sections at the LHC - Such changes in $\sigma_{Z,W}$ exceed NNLO corrections of \approx -2% or anticipated experimental error of \sim 1% - MSTW 2006 and 2008 predictions became compatible with the CTFQ6.6 result # PDF-induced correlations in $W, Z, t\bar{t}$ production ## W-Z: correlated dependence ### $W - t\bar{t}$ (or $Z - t\bar{t}$): anti-correlated dependence - Which parton flavors drive the "experimental" PDF uncertainties and lead to (anti-)correlations between the cross sections? - The PDF dependence of a cross section ratio σ_1/σ_2 is reduced (enhanced) if σ_1 and σ_2 are correlated (anticorrelated) # PDF-induced correlations in $W, Z, t\bar{t}$ production W-Z: correlated dependence $W - t\bar{t}$ (or $Z - t\bar{t}$): anti-correlated dependence - How can we reduce the remaining PDF uncertainties? - Ideally, we would like to relate $\delta_{PDF}\sigma$ to (a few) specific $f_a(x,\mu)$ # Experimental PDF errors: which measurements can reduce them? Knowing what to measure and how to measure it makes a complicated world much less so. The conventional wisdom is often wrong. S. D. Levitt, S. J. Dubner, Freakonomics ## PDF dependence of collider processes - Correlation analysis can be applied to understand rich PDF-induced relations between physical observables - Naive views about the PDF dependence tend to be misleading arXiv:0802.0007 (hep-ph) ## PARTON Freakonomics ROGUE SCIENTISTS EXPLORE THE HIDDEN SIDE OF THE PROTON ## Z production at the LHC Choose all that apply and select the x range The PDF uncertainty in σ_Z is mostly due to... - 1. u, d, \bar{u}, \bar{d} PDF's at $x < 10^{-2}$ $(x > 10^{-2})$ - 2. gluon PDF at $x < 10^{-2}$ ($x > 10^{-2}$) - 3. s, c, b PDF's at $x < 10^{-2}$ ($x > 10^{-2}$) #### Leading order #### Next-to-leading order ## An inefficient application of the error analysis © Compute σ_Z for 40 (now 44) extreme PDF eigensets Find eigenparameter(s) producing largest variation(s), such as #9, 10, 30 Θ It is not obvious how to relate abstract eigenparameters to physical PDF's u(x), d(x), etc. ### Correlation analysis for collider observables (J. Pumplin et al., PRD 65, 014013 (2002); P.N. and Z. Sullivan, hep-ph/0110378) A technique based on the Hessian method to relate the PDF uncertainty in physical cross sections to PDF's of specific flavors at known (x, μ) For 2N PDF eigensets and two cross sections X and Y: $$\Delta X = \frac{1}{2} \sqrt{\sum_{i=1}^{N} \left(X_i^{(+)} - X_i^{(-)} \right)^2}$$ $$\cos \varphi = \frac{1}{4\Delta X \, \Delta Y} \sum_{i=1}^{N} \left(X_i^{(+)} - X_i^{(-)} \right) \left(Y_i^{(+)} - Y_i^{(-)} \right)$$ $X_i^{(\pm)}$ are maximal (minimal) values of X_i tolerated along the *i*-th PDF eigenvector direction; N=22 for the CTEQ6.6 set ## Correlation angle φ Determines the parametric form of the X-Y correlation ellipse $$X = X_0 + \Delta X \cos \theta$$ $$Y = Y_0 + \Delta Y \cos(\theta + \varphi)$$ X_0 , Y_0 : best-fit values ΔX , ΔY : PDF errors $\cos \varphi \approx \pm 1$: $\cos \varphi \approx 0$: Measurement of X imposes tight loose constraints on Y ## Types of correlations #### X and Y can be - wo PDFs $f_1(x_1, Q_1)$ and $f_2(x_2, Q_2)$ (plotted as $\cos \varphi$ vs $x_1 \& x_2$) - a physical cross section σ and PDF f(x,Q) (plotted as $\cos \varphi$ vs x) - \blacksquare two cross sections σ_1 and σ_2 #### Correlations $\cos \varphi$ between W, Z cross sections and PDF's #### **Tevatron Run-2** Similar correlations for W production #### Correlations $\cos \varphi$ between W, Z cross sections and PDF's #### LHC #### **Tevatron Run-2** Similar correlations for W production #### Correlations of Z and $t\bar{t}$ cross sections with PDF's LHC Z, W cross sections are strongly correlated with g(x), c(x), b(x) at $x \sim 0.005$... they are strongly anticorrelated with processes sensitive to g(x) at $x \sim 0.1$ ($t\bar{t}, gg \rightarrow H$ for $M_H > 300$ GeV) Correlation between \(\sigma\)(LHC) and f(x,Q=85, GeV) ### $tar{t}$ vs Z cross sections at the LHC Measurements of $\sigma_{t\bar{t}}$ and σ_Z probe the same (gluon) PDF degrees of freedom at different x values ## Correlations between $\sigma(gg \to H^0)$, σ_Z , $\sigma_{t\bar{t}}$ As M_H increases: - $\cos \varphi(\sigma_H, \sigma_Z)$ decreases - $\cos \varphi(\sigma_H, \sigma_{t\bar{t}})$ increases # $\cos \varphi$ for various NLO Higgs production cross sections in SM and MSSM ## An example of a small correlation with the gluon Single-top production (NLO) - \blacksquare typical $x \sim 0.01$ - mostly correlated with u, d PDF's PDF uncertainties in W, Z total cross sections are irrelevant for some quark scattering processes (single-top, Z', ...) #### W and Z cross sections and their ratio - Radiative contributions have similar structure in W^{\pm} and Z cross sections; cancel well in Xsection ratios - The PDF uncertainty cancels partially because of differences in s, c, b scattering contributions #### W and Z cross sections and their ratio - 27% of $\sigma_{NLO}(W^\pm)$ from $c\bar{s} \to W^\pm$, 20% of $\sigma_{NLO}(Z^0)$ from $s\bar{s} \to Z^0$ - non-negligible effects from free strangeness and intrinsic charm (IC) PDF's ## σ_Z/σ_W at the LHC The remaining PDF uncertainty in σ_Z/σ_W is mostly driven by s(x); increases by a factor of 3 compared to CTEQ6.1 as a result of free strangeness in CTEQ6.6 ## Special PDF's with nonperturbative charm (Pumplin et al., 2007; updated in CTEQ6.6C) Three models responsible for intrinsic charm generation (light-cone, meson-cloud, and phenomenological sea-like), with $\langle x \rangle_{c+\bar{c}}$ up to 3.5% at scale Q_0 The enhancement in c(x,Q) persists at all practical Q, can be observed at the Tevatron and LHC ## $car{s}+car{b} ightarrow H^+$ in 2-Higgs doublet model at the LHC CTEQ6.6M uncertainty band covers most of the CTEQ6.5 uncertainty due to strangeness "Maximum-strength" sea-like IC leads to large enhancement \Rightarrow new measurements $(p\bar{p} \rightarrow ZcX?)$ are needed to constrain it! #### **Conclusions** - Narrow PDF error bands can be misleading; theoretical improvements for all fitted experiments and the analysis of the entirety of contributing factors must continue - CTEQ6.6 PDF's in the general-mass scheme: - important differences from ZM-VFNS and some CTEQ6.5 predictions - must be used as the standard CTEQ set from now on - A new technique to study PDF-induced correlations between physical observables - other ongoing efforts: NNLO/small- x/Q_T resummation in the global fits, impact of Run-2 jet data on the gluon PDF, PDF's for leading-order Monte-Carlos, a ROOT interface for PDF reweighting in Monte-Carlo programs; stay tuned! ## **Backup slides** #### General-mass variable-flavor number scheme (Aivasis et al.; Chuvakin et al.; Thorne, Roberts; Kniehl et al.; Buza et al.; Cacciari et al.; ...) - A series of effective fixed-flavor number (FFN) schemes, with N_f (the number of active parton flavors) incremented sequentially at momentum scales $\mu_{N_f} \approx m_{N_f}$ - incorporates essential $m_{c,b}$ dependence near, and away from, heavy-flavor thresholds #### General-mass variable-flavor number scheme (Aivasis et al.; Chuvakin et al.; Thorne, Roberts; Kniehl et al.; Buza et al.; Cacciari et al.; ...) Proved for inclusive DIS by J. Collins (1998) $$F_2(x, Q, m_c) = \sum_a \int_{\chi}^1 \frac{d\xi}{\xi} H_a(\frac{\chi}{\xi}, \frac{Q}{\mu}, \frac{m_c}{Q}) f_a(\xi, \frac{\mu}{m_c}) + \mathcal{O}\left(\frac{\Lambda_{QCD}}{Q}\right)$$ - \blacksquare $\lim_{Q\to\infty} H$ exists and is infrared safe - lacktriangle collinear logarithms $\sum_{k,n=1}^{\infty} lpha_s^k v_{kn} \ln^n(\mu/m_c)$ are resummed in $f_c(x,\mu/m_c)$ - \blacksquare no terms $\mathcal{O}(m_c/Q)$ in the remainder #### General-mass variable-flavor number scheme (Aivasis et al.; Chuvakin et al.; Thorne, Roberts; Kniehl et al.; Buza et al.; Cacciari et al.; ...) Proved for inclusive DIS by J. Collins (1998) $$F_2(x, Q, m_c) = \sum_a \int_{\chi}^1 \frac{d\xi}{\xi} H_a(\frac{\chi}{\xi}, \frac{Q}{\mu}, \frac{m_c}{Q}) f_a(\xi, \frac{\mu}{m_c}) + \mathcal{O}\left(\frac{\Lambda_{QCD}}{Q}\right)$$ - Works most effectively in DIS and Drell-Yan-like processes; practical implementation requires - 1. efficient treatment of mass dependence, rescaling of momentum fractions χ in processes with incoming c, b - 2. physically motivated factorization scale to ensure fast PQCD convergence (e.g., $\mu = Q$ in DIS) ## Simplified ACOT (χ) factorization scheme - Defined with $m_c=0$ in Wilson coefficient functions H with incoming charm quarks (Collins; Kramer, Olness, Soper) - ▶ simplifications! close to the full ACOT scheme numerically - Rescaled momentum fractions χ (Barnett, Haber, Soper; Tung, Kretzer, Schmidt) In neutral-current DIS: $$\chi = \left\{ egin{array}{ll} x \\ x \left(1 + rac{4m_c^2}{Q^2} ight) \end{array} ight.$$ for incoming g,q incoming c ## Tolerance hypersphere in the PDF space A hyperellipse $\Delta \chi^2 \leq T^2$ in space of N physical PDF parameters $\{a_i\}$ is mapped onto a hypersphere of radius T in space of N orthonormal PDF parameters $\{z_i\}$ ## Tolerance hypersphere in the PDF space 2-dim (i,j) rendition of N-dim (22) PDF parameter space Orthonormal eigenvector basis PDF error for a physical observable X is given by $$\Delta X = \vec{\nabla} X \cdot \vec{z}_m = \left| \vec{\nabla} X \right| = \frac{1}{2} \sqrt{\sum_{i=1}^{N} \left(X_i^{(+)} - X_i^{(-)} \right)^2}$$ ## Tolerance hypersphere in the PDF space 2-dim (i,j) rendition of N-dim (22) PDF parameter space Orthonormal eigenvector basis #### Correlation cosine for observables X and Y: $$\cos\varphi = \frac{\vec{\nabla}X \cdot \vec{\nabla}Y}{\Delta X \Delta Y} = \frac{1}{4\Delta X \Delta Y} \sum_{i=1}^{N} \left(X_{i}^{(+)} - X_{i}^{(-)}\right) \left(Y_{i}^{(+)} - Y_{i}^{(-)}\right)$$ ## $Z, W, t\bar{t}$ cross sections and correlations **Table:** Total cross sections σ , PDF-induced errors $\Delta \sigma$, and correlation cosines $\cos \varphi$ for Z^0 , W^\pm , and $t\bar{t}$ production at the Tevatron Run-2 (Tev2) and LHC, computed with CTEQ6.6 PDFs. | \sqrt{s} | Scattering | $\sigma, \Delta \sigma$ | Correlation $\cos arphi$ with | | | | |------------|--|-------------------------|-------------------------------|------------------|-------------|-----------------| | (TeV) | process | (pb) | Z^0 (Tev2) | W^{\pm} (Tev2) | Z^0 (LHC) | W^{\pm} (LHC) | | | $p\bar{p} \to (Z^0 \to \ell^+\ell^-)X$ | 241(8) | 1 | 0.987 | 0.23 | 0.33 | | 1.96 | $p\bar{p} \to (W^{\pm} \to \ell \nu_{\ell}) X$ | 2560(40) | 0.987 | 1 | 0.27 | 0.37 | | | $p\bar{p} \to t\bar{t}X$ | 7.2(5) | -0.03 | -0.09 | -0.52 | -0.52 | | | $pp \to (Z^0 \to \ell^+ \ell^-)X$ | 2080(70) | 0.23 | 0.27 | 1 | 0.956 | | | $pp \to (W^{\pm} \to \ell \nu) X$ | 20880(740) | 0.33 | 0.37 | 0.956 | 1 1 | | 14 | $pp \to (W^+ \to \ell^+ \nu_\ell) X$ | 12070(410) | 0.32 | 0.36 | 0.928 | 0.988 | | | $pp \to (W^- \to \ell^- \bar{\nu}_\ell) X$ | 8810(330) | 0.33 | 0.38 | 0.960 | 0.981 | | | $pp o t \bar{t} X$ | 860(30) | -0.14 | -0.13 | -0.80 | -0.74 | ## Correlations with single-top cross sections **Table:** Correlation cosines $\cos \varphi$ between single-top, W, Z, and $t\bar{t}$ cross sections at the Tevatron Run-2 (Tev2) and LHC, computed with CTEQ6.6 PDFs. | Single-top | Correlation $\cos \varphi$ with | | | | | | | |--------------------|---------------------------------|------------------|-----------------|----------------------|-----------------|------------------|--| | production channel | Z ⁰ (Tev2) | W^{\pm} (Tev2) | $tar{t}$ (Tev2) | Z ⁰ (LHC) | W^{\pm} (LHC) | $t\bar{t}$ (LHC) | | | t-channel (Tev2) | -0.18 | -0.22 | 0.81 | -0.82 | -0.79 | 0.56 | | | t-channel (LHC) | 0.09 | 0.14 | -0.64 | 0.56 | 0.53 | -0.42 | | | s-channel (Tev2) | 0.83 | 0.79 | 0.18 | 0.22 | 0.27 | -0.3 | | | s-channel (LHC) | 0.81 | 0.85 | -0.42 | 0.6 | 0.68 | -0.33 | | ## $tar{t}$ production as a standard candle process Uncertainties in $\sigma_{tar{t}}$ for $m_t=171~{ m GeV}$ | Туре | Current | Projected | Assumptions | | |----------------|-----------------------------|-----------------------------|--------------------------|--| | Scale | 11% | $\sim 3 - 5\%$? | $m_t/2 \le \mu \le 2m_t$ | | | dependence | (NLO) | (NNLO+resum.) | | | | PDF | 2% | 1%? | 1σ c.l. | | | dependence | | | | | | m_t | 5% | < 3% | | | | dependence | $\delta m_t = 2 {\rm GeV}$ | $\delta m_t = 1 {\rm GeV}$ | | | | Total (theory) | 12% | $\sim 5\%$ | | | | Experiment | 8% (CDF) | 5%? | | | ■Measurements of $\sigma_{t\bar{t}}$ with accuracy $\sim 5\%$ may be within reach; useful for monitoring of \mathcal{L}_{LHC} in the first years, normalization of cross sections sensitive to large-x glue scattering, as well as for new physics searches (reviewed by T. Han in arXiv:0804.3178) Updated theory estimates in Cacciari et al., arXiv:0804.2800; Moch, Uwer, arXiv:0804.1476 ## $\sigma(W^+)/\sigma(W^-)$ $\sigma(W^+)/\sigma(W^-) = 1.36 + 0.016$ (CTEQ6.6), 1.36 (MSTW'06NNLO), 1.35 (MRST'04NLO) ## Combined HERA-1 data set on neutral-current DIS cross sections are included but can barely be resolved. Averaging of the data leads to cross-calibration of H1 and ZEUS measurements, drastic reduction of systematic uncertainties Gang Li, HERALHC workshop, 2008